Mitglied der Helmholtz-Gemeinschaft

The ENC@FAIR Accelerator Project

September 27-29, 2009 | Andreas Lehrach

K. Aulenbacher, D. Barber, O. Boldt, R. Heine, W. Hillert, A.Jankowiak, A. Lehrach, Chr. Montag, P. Schnizer, T. Weis

Content

Introduction

FAIR accelerator facility HESR layout and experimental requirements Modifications for ENC@FAIR

Beam Dynamics

Beam equilibria and luminosities

Spin Dynamics

Spin resonances in SIS18 and HESR Measures for polarized beams

Summary

List of Major Tasks and Extensions

September 27-29, 2009

A. Lehrach, Workshop on Electron-Ion Colliders, Milos

HESR Layout

HESR Experimental Requirements

PANDA (Strong Interaction Studies with Antiprotons):

Momentum range: 1.5 to 15 GeV/c (Antiprotons)

Effective target thickness (pellets):4.1015 cm-2Beam radius on target (rms):0.3 mm		
	High Luminosity (HL)	High Resolution (HR)
Momentum range Number of antiprotons Peak luminosity Rel. momentum spread (rms)	1.5 – 15 GeV/c 10 ¹¹ 2⋅10 ³² cm ⁻² s ⁻¹ 1⋅10 ⁻⁴	1.5 – 8.9 GeV/c 10 ¹⁰ 2.10 ³¹ cm ⁻² s ⁻¹ ≤ 4.10 ⁻⁵

Electron and stochastic cooling Thick internal (pellet) targets Cavities for acceleration and barrier bucket (h=1 ... 20)

JÜLICH FORSCHUNGSZENTRUM

idea emerged 08/2008

L > 10³² cm⁻²s⁻¹

s^{1/2} > **10GeV** (3.3GeV/c e⁻ ↔ 15GeV/c p)

polarized e⁻ (> 80%) ↔ **polarized p** / **d** (> 80%) (transversal + longitudinal)

using the PANDA detector as much as possible

double polarized Electron Nucleon Collider Luminosity: 8 × HERA (unpol.)

IP Requirements

Requirements for Kick-Off Meeting IR Design, 09/09/09 Jülich:

• Acceptance angles in proton direction:

0° to 5°: detection and momentum resolution of protons in forward direction

25° to 155°: particle detection in target spectrometer

175° to 180°: detection of small-angle scattered electron

- Preserve PANDA geometry and PANDA central detector, other than inner tracker (30 cm diameter, 1.5m long)
- $\beta_{x,y} \approx 0.3 \text{m}$ for high luminosity
- Aperture radii: $6\sigma_{p}$ +0.01m for protons, $10\sigma_{e}$ +0.01m for electrons

IP Concept

Beam separation:

- Replace inner tracker with two dipoles, B = 0.6T; I = 0.5m
- Inside PANDA dipole, shield electron beam pipe by an iron pipe
- B = 1T PANDA dipole increases separation by bending the proton beam
- On opposite side, increase separation by B = 0.2T; I = 2m electron dipole

Beam focusing:

- Superconducting quadrupole triplets for each beam
 ~50 T/m for protons and 10 T/m for electrons
- Side-by-side in common cryostat for both triplets
- Quadrupole entrance at $s = \pm 7m$ (1m behind the PANDA dipole)

Top view

Sufficient separation at s = 1.44m for 200 bunches $\beta_{x,y}^* = 0.3$ m

IP Beam Properties

Chromaticity: $\zeta_{x,y} = \Delta Q_{x,y} / (\Delta p/p)$

• HESR with PANDA with $\beta_{x,y}^* = 1m$: ~ -15 (IP triplet: ~ -5, E-Cooler triplet: ~ -2)

Presently correction system with 52 sextupoles in four families can handle ~ -20

- ENC with $\beta_{x,y}^* = 0.3m$: ~ -40 (IP triplet:~ -30)
- \rightarrow Add additional sextupole magnets and sextupole families are needed
- ENC with $\beta_{x,y}^* = 0.1$ m: beta function roughly a factor of three larger in triplets compared to $\beta_{x,y}^* = 0.3$ m

more than a factor of three larger chromaticity more beam separation needed reduced machine acceptance

→ Quadrupole entrance would have to be moved to $s \le \pm 3.5$ m

HESR Electron Cooler

The Svedberg Laboratory Uppsala University Cooling Section

Beam Equilibria and Luminosities Baseline design (protons)

e-Cooler parameter: E=8.2 MeV, I=3 A, B=0.2T, T_T=1eV, T_L=0.5meV, B_r/B < 10^{-5} , L=24m RF parameter: f=52 MHz, U=300 kV

	HESR / 15GeV p	eRing / 3GeV
L [ring circumference, m]	~ 575	
ε ^{norm} / ε ^{geo} [mm mrad, rms]	≤ 2.1 / ≤ 0.13	
Δp/p (rms)	~ 4 ·10 ⁻⁴	
β _{IP} [m]	0.3	3
r _{IP} [mm, rms]	≤ 0.2	
I (bunch length) [m]	0.27 - 0.35	0.1
n (particle / bunch)	5.4·10 ¹⁰	23 .10 ¹⁰
h (number of bunches)	100	100
f _{coll} (collision freq) [MHz]	~ 52	
I _{coll} (bunch distance) [m]	~ 5.76	
ΔQ _{sc} (space charge)	≥ 0.05	
ξ (beam-beam parameter)	0.014	0.015
L (luminosity) [cm ⁻² s ⁻¹]	~ 2 · 10 ³²	

A. Lehrach, Workshop on Electron-Ion Colliders, Milos

Beam Equilibria and Luminosities

Advanced design (protons)

e-Cooler parameter: E=8.2 MeV, I=3 A, B=0.2T, T_T=1eV, T_L=0.5meV, B_r/B < 10^{-5} , L=24m RF parameter: f=104 MHz, U=300 kV

	HESR / 15GeV p	eRing / 3GeV
L [ring circumference, m]	~ 575	
ε ^{norm} / ε ^{geo} [mm mrad, rms]	≤ 2.3 / ≤ 0.14	
Δp/p (rms)	~ 4 ·10 ⁻⁴	
β _{IP} [m]	0.1	l i i i i i i i i i i i i i i i i i i i
r _{IP} [mm, rms]	≤ 0.1	
I (bunch length) [m]	0.19 - 0.25	0.1
n (particle / bunch)	3.6·10 ¹⁰	23 .10 ¹⁰
h (number of bunches)	200	200
f _{coll} (collision freq) [MHz]	~ 104	
I _{coll} (bunch distance) [m]	~ 2.88	
ΔQ _{sc} (space charge)	≥ 0.1	
ξ (beam-beam parameter)	0.014	0.01
L (luminosity) [cm ⁻² s ⁻¹]	~ 6 · 10 ³²	

A. Lehrach, Workshop on Electron-Ion Colliders, Milos

Beam Equiibria Protons vs. Deuterons

Analytic formula for 15 GeV/c beams: Cooling rate (electron cooling) ~ 1/(A*gamma²) →Factor of two larger for deuterons Heating rate (IBS) ~ 1/(A²*beta⁴*gamma) →Approx. factor of two smaller for deuterons

Beam equilibria of deuterons roughly a factor of three smaller $\varepsilon^{\text{geo}} \sim 0.12 \text{ mm mrad (rms)}$ for protons $\rightarrow \varepsilon^{\text{geo}} \sim 0.04 \text{ mm mrad (rms)}$ for deuterons

Relative momentum spread also much smaller: $\Delta p/p \text{ (rms)} \sim 4^*10^{-4} \text{ (rms)}$ for protons $\rightarrow \Delta p/p \text{ (rms)} \sim 2^*10^{-4} \text{ (rms)}$ deuterons and half bunch length

Luminosity could be much higher with same number of particles or cooling force can be reduced significantly But space charge limit has to be considered

→ Reduce Electron Current of the Cooler for Deuterons: $I_{ecooler} < 1$ A

Beam Equilibria and Luminosities Baseline design (deuteron)

e-Cooler parameter: E=4.1 MeV, I=0.5 A, B=0.2T, T_T=1eV, T_L=0.5meV, B_r/B < 10⁻⁵, L=24m RF parameter: f=89 MHz, U=300 kV

	HESR / 15GeV d	eRing / 3GeV
L [ring circumference, m]	~ 576	
ε ^{norm} / ε ^{geo} [mm mrad, rms]	≤ 2.4 / ≤ 0.15	
Δp/p (rms)	~ 2.4 ·10 ⁻⁴	
β _{IP} [m]	0.7	1
r _{IP} [mm, rms]	≤ 0.1	
I (bunch length) [m]	0.17 – 0.19	0.1
n (particle / bunch)	1.1·10 ¹⁰	23 .10 ¹⁰
h (number of bunches)	173	172
f _{coll} (collision freq) [MHz]	~ 89.3	
I _{coll} (bunch distance) [m]	~ 3.3	
ΔQ _{sc} (space charge)	≥ 0.1	
ξ (beam-beam parameter)	0.014	0.030
L (luminosity) [cm ⁻² s ⁻¹]	~ 1.8 · 10 ³²	

A. Lehrach, Workshop on Electron-Ion Colliders, Milos

Beam Preparation

Goal: 3.6-5.4·10¹² polarized protons / deuterons in 100-200 bunches

Injection:

 $2 \cdot 10^{11}$ pol. Protons / deuterons per cycle from SIS18 \rightarrow approx. 20 injections and bunch compression in h=2 cavity Pre-cooling?

Acceleration:

h=1 resp. h=2 system to 15 GeV/c

Beam preparation:

beam cooling to equilibrium and "adiabatic " bunching in h=100-200 system

Problem: Cooling time to equilibrium

Cooling Time to Equilibrium

Cooling time for 200 bunches:

At 3.8 GeV/c: 200s At 15 GeV/c: 250000s with same initial long. and transv. emittances With factor of four smaller initial emittance:100000s (27h!)

Cooling time for one or two bunches:

At 15 GeV/c: 40000-50000s With factor of four smaller initial emittance: 800-2000s

Cooling time for unbunched beam:

At 15 GeV/c: 35000s With factor of 4 smaller initial emittance: 1000s

 \rightarrow Low initial emittance (pre-cooling) and cooling of unbunched beams at 15 GeV/c

Pre-cooling at lower momentum could be limited by space charge

September 27-29, 2009

A. Lehrach, Workshop on Electron-Ion Colliders, Milos

Thomas-BMT Equation (Thomas [1927], Bargmann, Michel, Telegdi [1959]):

$$\frac{dS}{dt} = \frac{e}{\gamma m} \vec{S} x \left[(1 + \gamma G) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} \right]$$
Lab system

Number of spin rotations per turns:

$$v_p = \gamma G$$

$$G = \frac{g-2}{2}, G_p = 1.7928473, G_{\bar{p}} = 1.800, G_d = -0.142987$$

Imperfection resonance:

$$\gamma G = k$$
 k: integer

Field and positioning errors of magnets Resonance strength ~ *y*_{rms}

→ Vertical closed orbit correction

→ Partial Snake

Intrinsic resonance:

$$\gamma G = (kP \pm Q_y)$$

P: Super-periodicity *Q_v*: Vertical tune

Vertical focusing fields Resonance strength $\sim \sqrt{\varepsilon_y}$

→ Vertical tune jump
→ Vertical coherent betatron oscillation

- < 5 GeV: Conventional methods
 - → Correcting dipoles
 → Tune-jump quadrupoles

ZGS, COSY, ELSA, ...

- 5 10 GeV: Adiabatic spin-flip
 - → Partial snake → AC dipole

AGS

• > 10 GeV: Full Siberian snake

RHIC

Preliminary Scheme for ENC at FAIR

Scheme of the ENC@FAIR for electron-proton collisions

Contribution to the Particle Accelerator Conference, Vancouver, 2009

Proton Spin Resonances in SIS18

Acceleration to HESR injection: 369 MeV/c (70 MeV) – 3.8 GeV/c (3.0 GeV)

• Imperfection:

6

 $\begin{array}{l} 2 (464 \; \text{MeV/c}) \;, \; 3 \; (1.26 \; \text{GeV/c}), \; 4 \; (1.87 \; \text{GeV/c}), \\ 5 \; (2.44 \; \text{GeV/c}), \; 6 \; (3.00 \; \text{GeV/c}), \; 7 \; (3.51 \; \text{GeV/c}) \end{array}$

Correction:	Acceleration rate 1 GeV/c per 0.05s
	\rightarrow 3% partial snake (0.5 Tm solenoid)

• Intrinsic (P=12, Qy=3.28):

0+ (1.44 GeV/c) 12- (4.47 GeV/c)

Correction:Depending on beam emittance20 mm mrad (norm.): $\varepsilon_{\rm R} = 3 \cdot 10^{-3} \rightarrow \rm AC$ dipole1 mm mrad (norm.): $\varepsilon_{\rm R} < 10^{-3} \rightarrow \rm Tune$ -jump quadrupole

Strong: 8, 16, 24

21-, 22-, ... , 45-

-3+, -4+, ..., 11+

4, 5, 6, ... , 28

Proton Spin Resonances in HESR

- Intrinsic (P=1, Q_v=7.61):

• Imperfection:

• Coupling:

Correction: Full Siberian Snake

25

50

50

Magent System of the Electron Cooler

Integral magnetic field : ~20Tm

Required for full Siberian snake: 60 Tm (Proc. of SPIN 2004)

In Collaboration with Y.M. Shatunov et al. (BINP Novosibirsk)

Siberian Snake for HESR

RHIC Helix dipole snake

4 superconducting helix: 4T, 2 m length with almost 360° twist of conductors

Siberian Snake for HESR

HESR: 4 helix dipole (2.5 T) and 15 Tm solenoid

In Collaboration with A.U. Luccio, BNL

Polarized Protons vs. Deuterons

Polarization states:	$(2S+1) \rightarrow 3$ states for Spin 1
Vector polarization:	$P_{z} = (n_{+}-n_{-}) / (n_{+}+n_{-}+n_{0})$ $P_{z}^{max} = \pm 1$
Tensor polarization:	$P_{zz} = (1-3n_0) / (n_++n+n_0) P_{zz}^{max} = 1, -2$
Gyromagnetic anomaly:	G _p / G _d = -12.6
Spin tune:	$\gamma_p \mathbf{G}_p / \gamma_d \mathbf{G}_d = -25.2$
Spin resonance strength:	13 (low energies) to 25 (high energies) times weaker 25 times further apart
Strength of spin resonances:	same for vector and tensor polarization
Siberian snake:	much stronger magnetic fields

Deuteron Spin Resonances

• SIS18:

0

3

No imperfection resonance No intrinsic resonance One weak gradient error resonance 3- (3.16 GeV/c)

No Correction needed

• HESR:

Imperfection resonance: -1 (13.0 GeV/c) Intrinsic resonances: -8+ (4.76 GeV/c), 7- (7.78 GeV/c) Two weak coupling resonances

Correction: Partial snake, tune-jump quads

No longitudinal polarized beam!

Partial Snake for HESR

- Full Siberian snake for protons
- ONLY 20% partial snake for deuterons

Move working point close to integer \rightarrow .90 < Q_{frac} < .10 like in the AGS

Polarization Preservation in Electron Ring

- electron spin must be vertical in arcs, otherwise τ_{depol} < 20min (D. Barbers / DESY)
- sc solenoids and last bending for longitudinal spin direction at IP

spin dynamics requirements:

 $\gamma \bullet a = n + \frac{1}{2} (a = 0.0011596)$ and $\Delta \phi_{spin} = \gamma \bullet a \bullet \theta (\Delta \phi_{spin} = 90^{\circ})$

 γ=6467→E=3.305GeV, γ·a=7.5 and θ=12.00°
 γ=5605→E=2.864GeV, γ·a=6.5 and θ=13.85° (-44% SR-power)

Lattice design under consideration

JÜLICH

Extension for Polarized Beams

- Polarized ion and electron sources
- p/d acceleration via p-Linac or UNILAC
- Several polarimeter
- Systems for spin preservation Electrons
 - \rightarrow correction system for polarized injector
 - \rightarrow polarization preservation and preparation in electron ring

Protons

- \rightarrow correction system for SIS18
 - (space available?, 2 times 0.5 m needed)
- \rightarrow Full Siberian snake for HESR
 - (space reserved)

Deuterons

→ Partial snake and tune-jump quads for HESR No longitudinal polarized beam

Summary

• Protons (baseline) : $L = 2 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

 β_{IP} [m] = 0.3 m, $\Delta Q_{sc} \ge 0.05$, $E_{ecooler} = 8.2$ MeV, $I_{ecooler} = 3$ A Upgrade of the planned electron cooler needed

• Deuterons (baseline): $L = 1.8 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

 β_{IP} [m] = 0.1 m, $\Delta Q_{sc} \ge 0.1$, $E_{ecooler}$ = 4.1 MeV, $I_{ecooler}$ = <1 A Modifications of the IP concept required

• Protons (advanced): $L = 6 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

 $\beta_{\text{IP}} \text{ [m]} = 0.1 \text{ m}, \Delta Q_{\text{sc}} \geq 0.1, \text{ } \text{E}_{\text{ecooler}} = 8.2 \text{ MeV}, \text{ } \text{I}_{\text{ecooler}} = 3 \text{ A}$

Major Tasks and Extensions

Beam dynamics simulations:

- Lattice for electron ring
- Accumulation, acceleration and bunching process in HESR
- Ion-optics at IP / detector integration / Crab crossing
- Chromaticity correction
- Beam beam effect in low energy e-n collider
- Space charge for protons / deuterons

Hardware extensions and modifications:

- Polarized electron injector and ring
- Modification of the interaction region
- Extension of the electron cooler

• Additional 52 - 104 MHz, 300 kV cavity required

September 27-29, 2009

A. Lehrach, Workshop on Electron-Ion Colliders, Milos